Geometric Mean Curvature Lines on Surfaces Immersed in R Ronaldo Garcia and Jorge Sotomayor
نویسنده
چکیده
Here are studied pairs of transversal foliations with singularities, defined on the Elliptic region (where the Gaussian curvature K is positive) of an oriented surface immersed in R. The leaves of the foliations are the lines of geometric mean curvature, along which the normal curvature is given by √ K, which is the geometric mean curvature of the principal curvatures k1, k2 of the immersion. The singularities of the foliations are the umbilic points and parabolic curves, where k1 = k2 and K = 0, respectively. Here are determined the structurally stable patterns of geometric mean curvature lines near the umbilic points, parabolic curves and geometric mean curvature cycles, the periodic leaves of the foliations. The genericity of these patterns is established. This provides the three essential local ingredients to establish sufficient conditions, likely to be also necessary, for Geometric Mean Curvature Structural Stability. This study, outlined at the end of the paper, is a natural analog and complement for the Arithmetic Mean Curvature and Asymptotic Structural Stability of immersed surfaces studied previously by the authors [6, 7, 9]. Résumé. Dans ce travail on étudie les paires de feuilletages transverses avec singularités, définis dans la région elliptique d’une surface orientée plongée dans l’espace R. Les feuilles sont les lignes de courbure géométrique moyenne, selon lesquelles la courbure normale est donnée par la moyenne géométrique √ k1k2 des courbures principales k1, k2. Les singularités sont les points ombilics ( oú k1 = k2) et les courbes paraboliques (oú k1k2 = 0 ). On détermine les conditions pour la stabilité structurelle des feuilletages autour des points ombilics, des courbes paraboliques et des cycles de courbure géométrique moyenne (qui sont les feuilles compactes). La généricité de ces conditions est établie. Munis de ces conditions on établit les conditions suffisantes, qui sont aussi vraisemblablement nécessaires, pour la stabilité structurelle des feuilletages. Ce travail est une continuation et une généralisation naturelles de ceux sur les lignes à courbure arithmétique moyenne, selon lesquelles la courbure normale est donnée par (k1+k2)/2 et sur les lignes à courbure nulle, qui sont les courbes asymptotiques. Voir les articles [6, 7, 9].
منابع مشابه
Harmonic Mean Curvature Lines on Surfaces Immersed in R Ronaldo Garcia and Jorge Sotomayor
Consider oriented surfaces immersed in R. Associated to them, here are studied pairs of transversal foliations with singularities, defined on the Elliptic region, where the Gaussian curvature K, given by the product of the principal curvatures k1, k2 is positive. The leaves of the foliations are the lines of harmonic mean curvature, also called characteristic or diagonal lines, along which the ...
متن کاملM ar 2 00 4 LINES OF MEAN CURVATURE ON SURFACES IMMERSED IN R
Associated to oriented surfaces immersed in R 3 , here are studied pairs of transversal foliations with singularities, defined on the Elliptic region, where the Gaussian curvature K, given by the product of the principal curvatures k1, k2 of the immersion, is positive. The leaves of the foliations are the lines of M-mean curvature, along which the normal curvature of the immersion is given by a...
متن کاملGeometric mean curvature lines on surfaces immersed in R3
Here are studied pairs of transversal foliations with singularities, defined on the Elliptic region (where the Gaussian curvature 1’C is positive) of an oriented surface immersed in ]R3. The leaves of the foliations are the lines of geometric mean curvature, along which the normal curvature is given by B/~, which is the geometric mean curvature of the principal curvatures ki , k2 of the immersi...
متن کاملLines of Principal Curvature on Canal Surfaces in R Ronaldo Garcia, Jaume Llibre and Jorge Sotomayor
In this paper are determined the principal curvatures and principal curvature lines on canal surfaces which are the envelopes of families of spheres with variable radius and centers moving along a closed regular curve in R. By means of a connection of the differential equations for these curvature lines and real Riccati equations, it is established that canal surfaces have at most two isolated ...
متن کاملStructurally Stable Configurations of Lines of Mean Curvature and Umbilic Points on Surfaces Immersed in R
In this paper we study the pairs of orthogonal foliations on oriented surfaces immersed in R3 whose singularities and leaves are, respectively, the umbilic points and the lines of normal mean curvature of the immersion. Along these lines the immersions bend in R3 according to their normal mean curvature. By analogy with the closely related Principal Curvature Configurations studied in [S-G], [G...
متن کامل